Scanning capillary microscopy/mass spectrometry for mapping spatial electrochemical activity of electrodes.

نویسندگان

  • A D Modestov
  • S Srebnik
  • O Lev
  • J Gun
چکیده

A new technique for microscopic imaging of electrochemically active surfaces is introduced. The technique combines concepts of probe microscopy and advances in mass spectrometry. The technique is based on a miniature electrochemical flow cell scanner. A liquid feed stream containing a redox component is introduced to the vicinity of the examined location through the annulus of a coaxial capillary set. The incoming reagent interacts with the target location, and the generated product stream is transferred through the inner capillary to an electrospray mass spectrometer, ESI-MS. Thus, a multicomponent, potential-dependent image of the products' distribution versus the location on the electrode is generated. The use of the technique is demonstrated by scanning the electrochemical heterogeneity of model electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local visualization of catalytic activity at gas evolving electrodes using frequency-dependent scanning electrochemical microscopy.

A new concept for the localized characterization of gas evolving electrodes based on scanning electrochemical microscopy (SECM) is suggested. It offers information about the spatial distribution of the predominant locations, which represent the most active catalytic sites, and dynamic characteristics of gas-bubble departure. The knowledge about gas-bubble departure is critical for the assessmen...

متن کامل

Fe3O4 Magnetic Nanoparticles/ Graphene Oxide Nanosheets/Carbon Cloth as an Electrochemical Sensing Platform

In this work, for eliminating the (RR1346), considered to be a waste in wastewater from dye industries electrochemical advanced oxidation process has been used. Graphene oxide coated carbon cloth (GO/CC) and Fe3O4 /GO coated carbon cloth (Fe3O4/GO/CC) electrodes has been fabricated by synthesized GO and Fe3O4 nanoparticles. Characteristic properties such as surface morphology as the main reason...

متن کامل

NieCeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte

In this work, nickel-based electrodes were prepared using composite electrodeposition technique in a nickel sulphamate bath containing suspended microor nano-sized CeO2 particles. The prepared NieCeO2 composite electrodes exhibit an enhanced high catalytic activity toward hydrogen evolution reaction (HER) in alkaline solutions. X-ray diffraction patterns indicated that the CeO2 particles have b...

متن کامل

Effect of temperature on kinetics of the hydrogen evolution reaction on Ni-P-C cathodes in alkaline solution

The kinetics of hydrogen evolution reaction (HER) was studied in 1M NaOH at various temperatures (298 to 358 K) on Ni-P-C (composite electrodes. The electrochemical efficiency of the electrodes has been evaluated on the basis of electrochemical data obtained from the steady-state polarization Tafel curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1M NaOH solut...

متن کامل

Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction.

The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 73 17  شماره 

صفحات  -

تاریخ انتشار 2001